contoh soal dan jawaban teorema pythagoras
Pertanyaan
2 Jawaban
-
1. Jawaban hakimium
Diberikan dua contoh soal dan jawaban teorema Phytagoras.
Model-1
Diketahui ΔPQR dengan ukuran PQ = 9 cm, PR = 40 cm, dan QR = 41 cm. Jenis ΔPQR adalah ... (segitiga lancip/segitiga siku-siku/segitiga tumpul).
Pengerjaan
QR > PR > PQ
Selidiki hubungan antara QR² dengan PR² dan PQ².
- QR = 41 ⇒ QR² = 1.681.
- PR = 40 ⇒ PR² = 1.600.
- PQ = 9 ⇒ PQ² = 81.
PR² + PQ² = 1.600 + 81 = 1.681
Ternyata QR² = PR² + PQ²
Kesimpulan
ΔPQR adalah segitiga siku-siku, dengan sudut siku-siku di titik P karena menghadap sisi terpanjang QR.
Model-2
Sebuah balok berukuran panjang 12 cm, lebar 9 cm, dan tinggi 8 cm. Panjang salah satu diagonal ruangnya adalah ...
Pengerjaan
Kita sebut balok ABCD.EFGH dengan salah satu diagonal ruangnya adalah AG.
Rumus panjang diagonal ruang balok adalah [tex]\boxed{~AG = \sqrt{p^2 + l^2 + t^2}~}[/tex]
Dengan p, l, dan t sebagai panjang, lebar, dan tinggi.
[tex]AG = \sqrt{12^2 + 9^2 + 8^2}[/tex]
[tex]AG = \sqrt{144 + 81 + 64}[/tex]
AG = √289
Diperoleh panjang diagonal ruang balok sebesar 17 cm.
Pembahasan
Dari dua contoh soal di atas, kita dapat mengingat dua hal penting di bawah ini.
(a). Menguji jenis segitiga
Pada sebuah segitiga dengan panjang sisi-sisi a, b, dan c dengan c sebagai sisi yang terpanjang, berlaku:
- a² + b² = c² ⇒ segitiga siku-siku;
- a² + b² < c² ⇒ segitiga tumpul;
- a² + b² > c² ⇒ segitiga lancip;
- a = b = c ⇒ segitiga sama sisi.
(b). Panjang diagonal ruang sebuah balok
[tex]\boxed{~\sqrt{p^2 + l^2 + t^2}~}[/tex]
Pelajari lebih lanjut
- Menyelidiki jenis segitiga dengan panjang sisi-sisi brainly.co.id/tugas/4796409
- Kasus belah ketupat https://brainly.co.id/tugas/7994966
--------------------
Detil jawaban
Kelas : VIII
Mapel : Matematika
Bab : Teorema Phytagoras
Kode : 8.2.4
Kata Kunci : contoh soal dan jawaban, teorema phytagoras, segitiga siku-siku, selidiki, balok, ukuran, panjang, diagonal ruang, brainly
2. Jawaban nurhoisam
1. Sebuah batang pohon sepanjang 5 meter, diletakkan miring pada sebuah tembok bangunan. Jika jarak dari ujung tembok bangunan yang terkena batang sampai ke tanah adalah 4 meter, maka jarak dari batang bawah ke tembok adalah... ?
Jawab : Sisi terpanjang = 5 m
sisi lain = 4 m
Maka : x = √(sisipanjang² - sisi lain²)
x = √(5² - 4²)
x = √(25 - 16)
x = √9 = 3 meter
jadi, jarak dari batang bawah ke tembok adalah 3 meter
2. Rino memiliki sebuah kertas berukuran 7×24 inch
kemudian kertas itu dipotong secara diagonal. maka panjang diagonal dari potongan tersebut adalah ?
Jawab : sisi terpanjang = diagonal
sisi lain = 7" dan 24"
maka,, diagonal = √(7² + 24²)
diagonal = √(49+576)
diagonal = √625 = 25 inch
jadi, panjang diagonal adalah 25 inch
Semoga membantu :)